• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
The Egyptian Journal of Plastic and Reconstructive Surgery
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 49 (2025)
Volume Volume 48 (2024)
Volume Volume 47 (2023)
Volume Volume 46 (2022)
Volume Volume 45 (2021)
Volume Volume 44 (2020)
Volume Volume 43 (2019)
Volume Volume 42 (2018)
Issue Issue 2
Issue Issue 1
Soliman, H., Ismail, H., Shouman, O., Bahaa El Din, A., El Hadidy, M. (2018). Stem Cells Assisted Cancellous Bone Graft Versus Stem Cells with Demineralized Bone Matrix for Alveolar Cleft Reconstruction. The Egyptian Journal of Plastic and Reconstructive Surgery, 42(1), 93-101. doi: 10.21608/ejprs.2018.215070
Helmy A Soliman; Hossam El Din A Ismail; Omar O Shouman; Ahmed M Bahaa El Din; Mohamed R El Hadidy. "Stem Cells Assisted Cancellous Bone Graft Versus Stem Cells with Demineralized Bone Matrix for Alveolar Cleft Reconstruction". The Egyptian Journal of Plastic and Reconstructive Surgery, 42, 1, 2018, 93-101. doi: 10.21608/ejprs.2018.215070
Soliman, H., Ismail, H., Shouman, O., Bahaa El Din, A., El Hadidy, M. (2018). 'Stem Cells Assisted Cancellous Bone Graft Versus Stem Cells with Demineralized Bone Matrix for Alveolar Cleft Reconstruction', The Egyptian Journal of Plastic and Reconstructive Surgery, 42(1), pp. 93-101. doi: 10.21608/ejprs.2018.215070
Soliman, H., Ismail, H., Shouman, O., Bahaa El Din, A., El Hadidy, M. Stem Cells Assisted Cancellous Bone Graft Versus Stem Cells with Demineralized Bone Matrix for Alveolar Cleft Reconstruction. The Egyptian Journal of Plastic and Reconstructive Surgery, 2018; 42(1): 93-101. doi: 10.21608/ejprs.2018.215070

Stem Cells Assisted Cancellous Bone Graft Versus Stem Cells with Demineralized Bone Matrix for Alveolar Cleft Reconstruction

Article 14, Volume 42, Issue 1, January 2018, Page 93-101  XML PDF (95 K)
Document Type: Original Article
DOI: 10.21608/ejprs.2018.215070
View on SCiNiTO View on SCiNiTO
Authors
Helmy A Soliman* 1; Hossam El Din A Ismail2; Omar O Shouman2; Ahmed M Bahaa El Din2; Mohamed R El Hadidy2
1The Department of Plastic Surgery Mataria Teaching Hospital , Cairo
2The Department of Plastic Surgery, Faculty of Medicine, Mansoura University, Egypt
Abstract
Background: Although different bone graft materials have
been suggested in the literatures for alveolar cleft reconstruction
including autogenous, allogenic, xenogenic, and alloplastic
grafts, Autogenous bone graft either from the iliac crest or
the tibial plateau remains the gold standard against which
other graft materials are evaluated. However, the procedure
is invasive and associated with a potential risk of early
complications such as bleeding, pain, infection, fracture and/or
late complications such as chronic pain, scarring, paresthesia
and gait abnormalities. Moreover, its failure rate is about
15%.
Objectives: To assess the efficacy of using adipose derived
stem cells (ASCs) in alveolar cleft reconstruction; whether
added to the cancellous bone or used with demineralized bone
matrix scaffold; in comparison to the conventional iliac crest
bone grafting (ICBG).
Patients and Methods: 24 patients underwent alveolar
cleft reconstruction at the age of mixed dentition over a 3-
years period; three of them had two grafted sites (bilateral
cleft cases) giving an overall total of 27 grafted sites assessed
during this study. Their mean age was 11.9 years and their
mean postoperative follow-up was 11.7 months. Of these, 9
constituted the ICBG group (standard group), 10 constituted
the ACSs with ICBG scaffold (ASCs/ICBG) group, whereas
the remaining 8 made up ACSs with DBM (ASCs/DBM)
group. Results were assessed by rating the radiographs obtained
6 months postoperatively according to Bergland scale.
Results: Alveolar cleft repairs using cancellous bone only
(ICBG group) were 77.8 percent successful, alveolar cleft
repairs using cancellous bone enhanced with ASCs (ASCs/
ICBG group) were 90 percent successful, and alveolar cleft
repairs using DBM enhanced with ASCs (ASCs/DBM group)
were 50 percent successful, but there were no significant
statistical difference between the groups. ASCs/DBM group < br />shows significantly shorter operative time, and higher cleft
site infection rates.
Conclusion: Using ASCs whether with DBM or ICBG is
not significantly better than the conventional method, while
using DBM significantly reduced operative time, but associated
with higher risk of infection.
Keywords
Alveolar cleft reconstruction; Stem cells; Demineralized bone matrix
Main Subjects
Maxillofacial and cranio-maxillo-facial surgery
References
Horswell B.B. and Henderson J.M.: Secondary osteoplasty
of the alveolar cleft defect. J. Oral Maxillofac. Surg., 61
(9): 1082-1090, 2003.
2- Jia Y.L., Fu M.K. and Ma L.: Long-term outcome of
secondary alveolar bone grafting in patients with various
types of cleft. Br. J. Oral Maxillofac. Surg., 44: 308-312,
2006.
3- Cohen M., Figueroa A.A., Haviv Y., et al.: Iliac versus
cranial bone for secondary grafting of residual alveolar
clefts. Plast Reconstr Surg., 87: 423-427, 1991.
4- Gimbel M., Ashley R.K., Sisodia M., et al.: Repair of
alveolar cleft defects: Reduced morbidity with bone
marrow stem cells in a resorbable matrix. J. Craniofac.
Surg., 18 (4): 895-901, 2007.
5- Moreau J.L., Caccamese J.F., Coletti D.P., et al.: Tissue
engineering solutions for cleft palates. J. Oral Maxillofac.
Surg., 65 (12): 2503-11, 2007.
6- Schultze-Mosgau S., Nkenke E., Schlegel A.K., et al.:
Analysis of bone resorption after secondary alveolar cleft
bone grafts before and after canine eruption in connection
with orthodontic gap closure or prosthodontic treatment.
J. Oral Maxillofac. Surg., 61 (11): 1245-1253, 2003.
7- Viktot T., Zach J., Maryam K., et al.: Stem cells, growth
factors and scaffolds in craniofacial regenerative medicine.
Genes & Diseases J., 3 (1): 56-71, 2016.
8- Filho O., Ozawa T., Bachega C., et al.: Reconstruction of
alveolar cleft with allogenous bone graft: Clinical considerations.
Dent. Press J. Orthod, 18 (6): 138-147, 2013.
9- Tanimoto K., Sumi K., Yoshioka M., et al.: Experimental
tooth movement into new bone area regenerated by use
of bone marrow-derived mesenchymal stem cells. Cleft
100 Vol. 42, No. 1 / Stem Cells Assisted Cancellous Bone Graft Versus Stem Cells
Palate Craniofac. J., 19: doi: http://dx.doi.org/10.1597/12-
232, 2013.
10- Zhang D., Chu F., Yang Y., et al.: Orthodontic tooth
movement in alveolar cleft repaired with a tissue engineering
bone: An experimental study in dogs. Tissue Eng.
Part A, 17 (9-10): 1313-1325, 2011.
11- Pourebrahim N., Hashemibeni B., Shahnaseri S., et al.:
A comparison of tissue-engineered bone from adiposederived
stem cell with autogenous bone repair in maxillary
alveolar cleft model in dogs. Int. J. Oral Maxillofac. Surg.,
42 (5): 562-570, 2013.
12- Korn P., Schulz M.C., Range U., et al.: Efficacy of tissue
engineered bone grafts containing mesenchymal stromal
cells for cleft alveolar osteoplasty in a rat model. J.
Craniomaxillofac. Surg., 4. pii: S1010 5182(14)00090-
0, 2014.
13- Pradel W., Tausche E., Gollogly J., et al.: Spontaneous
tooth eruption after alveolar cleft osteoplasty using tissueengineered
bone: A case report. Oral Surg. Oral Med.
Oral Pathol. Oral Radiol. Endod J., 105 (4): 440-444,
2008.
14- Behnia H., Khojasteh A., Soleimani M., et al.: Repair of
alveolar cleft defect with mesenchymal stem cells and
platelet derived growth factors: A preliminary report. J.
Craniomaxillofac. Surg., 40 (1): 2-7, 2012.
15- Stanko P., Mracna J., Stebel A., et al.: Mesenchymal stem
cells - a promising perspective in the orofacial cleft
surgery. Bratisl Lek Listy, 114 (2): 50-52, 2013.
16- Coleman S.R.: Structural fat grafts: The ideal filler?, Clin.
Plast. Surg., 28: 111e9, 2001.
17- Bergland O., Semb G., abyholm F., et al.: Secondary bone
grafting and orthodontic treatment in patients with bilateral
complete clefts of the lip. Annals of Plastic Surgery J.,
17 (6): 460-474, 1986.
18- Rawashdeh M. and Telfah H.: Secondary alveolar bone
grafting: The dilemma of donor site selection and morbidity.
Br. J. Oral Maxillofac. Surg., 46 (8): 665-670,
2008.
19- Ochs M.: Alveolar cleft bone grafting (Part II): Secondary
bone grafting. J. Oral Maxillofac. Surg., 54 (1): 83-88,
1996.
20- Oppenheimer A.J., Mesa J. and Buchman S.R.: Current
and emerging basic science concepts in bone biology:
implications in craniofacial surgery. Craniofac. Surg. J.,
23: 30-36, 2012.
21- Zuk P., Zhu M., Mizuno H., et al.: Multilineage cells from
human adipose tissue: Implications for cell-based therapies.
Tissue Eng. J., 7: 211-218, 2001.
22- Yoshimura K., Sato K., Aoi N., et al.: Cell-assisted
lipotransfer for cosmetic breast augmentation: Supportive
use of adipose-derived stem/stromal cells. Aesthetic Plast.
Surg. J., 32: 48-55, 2008.
23- Hibi H., Yamada Y., Ueda M., et al.: Alveolar cleft
osteoplasty using tissue-engineered osteogenic material.
Int. J. Oral Maxillofac. Surg., 35 (6): 551-555, 2006.
24- Peng L., Jia Z., Yin X., et al.: Comparative Analysis of
Mesenchymal Stem Cells from Bone Marrow, Cartilage,
and Adipose Tissue. Stem Cells and Development J., 17:
761-774, 2008.
25- Rubio D., Garcia-Castro J., Bernad A., et al.: Spontaneous
human adult stem cell transformation. Cancer Res. J., 65
(8): 3035-3039, 2005.
26- Lu F., Mizuno H., Uyasal C., et al.: Improved viability
of random pattern skin flaps through the use of adipose
derived stem cells. Plast. Reconstr. Surg. J., 121: 50-58,
2008.
27- Guasti L., Prasongchean W., Kleftouris G., et al.: High
plasticity of pediatric adipose tissue derived stem cells:
Too much for selective skeletogenic differentiation? Stem
Cells Transl Med., 1 (5): 384-395, 2012.
28- Yang P., Huang X., Wang C., et al.: Repair of bone defects
using a new biomimetic construction fabricated by adiposederived
stem cells, collagen I, and porous beta-tricalcium
phosphate scaffolds. Exp. Biol. Med. (Maywood), 238
(12): 1331-1343, 2013.
29-. Daei-Farshbaf N., Ardeshirylajimi A., Seyedjafari E., et
al.: Bioceramic-collagen scaffolds loaded with human
adipose-tissue derived stem cells for bone tissue engineering,
41 (2): 741-749, 2014.
30- Benazzo F., Botta L., Scaffino M.F., et al.: Trabecular
titanium can induce in vitro osteogenic differentiation of
human adipose derived stem cells without osteogenic
factors. J. Biomed Mater Res. A, 102 (7): 2061-2071,
2014.
31- Lendeckel S., Jödicke A., Christophis P., et al.: Autologous
stem cells (adipose) and fibrin glue used to treat widespread
traumatic calvarial defects: Case report. J. Craniomaxillofac.
Surg., 32 (6): 370-373, 2004.
32- Cameron S., Francis M., Sheila S., et al.: rhBMP-2 with
a demineralized bone matrix scaffold versus autologous
iliac crest bone graft for alveolar cleft reconstruction.
Plast. Reconstr. Surg. J., 131 (5): 1107-1115, 2013.
33- Sivak W., Macisaac Z., Rottgers S., et al.: Management
of failed alveolar bone grafts: Improved outcomes and
decreased morbidity with allograft alone. Plast. Reconstr.
Surg. J., 133: 345-354, 2014.
34- Macisaac Z., Rottgers S., Davit A., et al.: Alveolar reconstruction
in cleft patients: decreased morbidity and improved
outcomes with supplemental demineralized bone
matrix and cancellous allograft. Plast. Reconstr. Surg. J.,
130: 625-632, 2012.
35- Louis J., Murakami H., Kim H., et al.: Evidence of
osteoinduction by Grafton demineralized bone matrix in
nonhuman primate spinal fusion. Spine J., 29: 360-366,
2004.
36- Kom P., Schulz M., Range U., et al.: Efficacy of tissue
engineered bone grafts containing mesenchymal stromal
cells for cleft alveolar osteoplasty in a rat model. J.
Craniomaxillofac. Surg., 42 (7): 1277-1285, 2014.
37- Yuanzheng C., Yan G., Ting L., et al.: Enhancement of
the repair of dog alveolar cleft by an autologous iliac
bone, bone marrow-derived mesenchymal stem cell, and
platelet-rich fibrin mixture. Plast. Reconstr. Surg. J., 135
(5): 1404-1427, 2015.
38- Benliday, Tatil U., Kurkcu M., et al.: Comparison of
bovine-derived hydroxyapatite and autogenous bone for
secondary alveolar bone grafting in patients with alveolar
clefts. Oral Maxillofac. Surg. J., 1: 95-102, 2012.
Egypt, J. Plast. Reconstr. Surg., January 2018 101
39- De Ruiter A., Janssen N., van Es R., et al.: Micro structured
beta-tricalcium phosphate for repair of the alveolar cleft
in cleft lip and palate patients: A pilot study. Cleft Palate
Craniofac. J., 52 (3): 336-340, 2015.
40- Tuli S.M. and Singh A.D.: The osteoninductive property
of decalcified bone matrix. An experimental study. J.
Bone Joint Surg., 60: 116-123, 1978.
41- Marukawa E., Oshina H., Iino G., et al.: Reduction of
bone resorption by the application of platelet-rich plasma
(PRP) in bone grafting of the alveolar cleft. J. Craniomaxillofac.
Surg., 39 (4): 278-283, 2011.
42- Alonso N., Tanikawa D.Y., Freitas Rda S., et al.: Evaluation
of maxillary alveolar reconstruction using a resorbable
collagen sponge with recombinant human bone morphogenetic
protein-2 in cleft lip and palate patients. Tissue
Eng. Part C Methods, 16 (5): 1183-1192, 2010.
43- Backly R.M., Zaky S.H., Canciani B., et al.: Platelet rich
plasma enhances osteoconductive properties of a hydroxyapatite-
ß-tricalcium phosphate scaffold (Skelite) for late
healing of critical size rabbit calvarial defects. J. Craniomaxillofac.
Surg., 42 (5e): 70-79, 2014.
44- Dutra C.E., Pereira M.M., Serakides R., et al.: In vivo
evaluation of bioactive glass foams associated with platelet-
rich plasma in bone defects. J. Tissue Eng. Regen.
Med., 2 (4): 221-228, 2008.
45- Luaces-Rey R., Arenaz-Búa J., Lopez-Cedrún-Cembranos
J.L., et al.: Is PRP useful in alveolar cleft reconstruction?
Platelet-rich plasma in secondary alveoloplasty. Med.
Oral Patol. Oral Cir. Bucal, 15 (4e): 619-623, 2010.
46- Canan L.W., da Silva Freitas R., Alonso N., et al.: Human
bone morphogenetic protein-2 use for maxillary reconstruction
in cleft lip and palate patients. J. Craniofac.
Surg., 23 (6): 1627-1633, 2012.
47- Fallucco M.A. and Carstens M.H.: Primary reconstruction
of alveolar clefts using recombinant human bone morphogenic
protein-2: Clinical and radiographic outcomes. J.
Craniofac. Surg., 2: 1759-1764, 2009.
48- Neovius E., Lemberger M., Docherty A.C., et al.: Alveolar
bone healing accompanied by severe swelling in cleft
children treated with bone morphogenetic protein-2 delivered
by hydrogel. J. Plast. Reconstr. Aesthet. Surg., 66
(1): 37-42, 2013.
49- Dickinson B., Ashley B., Wasson R., et al.: Reduced
morbidity and improved healing with bone morphogenic
protein-2 in older patients with alveolar cleft defects.
Plast. Reconstr. Surg. J., 121 (1): 209-217, 2008.
50- Ananth S., Murthy M., James A., et al.: Secondary alveolar
bone grafting: An outcome analysis. Can J. Plast. Surg.,
14 (3): 172-174, 2006.
51- Felstead A.M., Deacom S. and Revington P.: The outcome
for secondary alveolar bone grafting in the South West
UK region post-CSAG. Cleft Palate Craniofac. J., 47 (4):
359-362, 2010.

Statistics
Article View: 211
PDF Download: 302
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.