• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
The Egyptian Journal of Plastic and Reconstructive Surgery
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 49 (2025)
Volume Volume 48 (2024)
Volume Volume 47 (2023)
Volume Volume 46 (2022)
Volume Volume 45 (2021)
Volume Volume 44 (2020)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 43 (2019)
Volume Volume 42 (2018)
Saleh, M., Ghanem, A., Hamad, O., Abdel Latif, A. (2020). Improving Aesthetic Outcome in Managing Acute and Chronic Upper and Midface Deformities Using Computer Assisted Planning. The Egyptian Journal of Plastic and Reconstructive Surgery, 44(2), 337-352. doi: 10.21608/ejprs.2020.113497
Mohamed A.A. Saleh; Amr A. Ghanem; Omar A. Hamad; Assem M. Abdel Latif. "Improving Aesthetic Outcome in Managing Acute and Chronic Upper and Midface Deformities Using Computer Assisted Planning". The Egyptian Journal of Plastic and Reconstructive Surgery, 44, 2, 2020, 337-352. doi: 10.21608/ejprs.2020.113497
Saleh, M., Ghanem, A., Hamad, O., Abdel Latif, A. (2020). 'Improving Aesthetic Outcome in Managing Acute and Chronic Upper and Midface Deformities Using Computer Assisted Planning', The Egyptian Journal of Plastic and Reconstructive Surgery, 44(2), pp. 337-352. doi: 10.21608/ejprs.2020.113497
Saleh, M., Ghanem, A., Hamad, O., Abdel Latif, A. Improving Aesthetic Outcome in Managing Acute and Chronic Upper and Midface Deformities Using Computer Assisted Planning. The Egyptian Journal of Plastic and Reconstructive Surgery, 2020; 44(2): 337-352. doi: 10.21608/ejprs.2020.113497

Improving Aesthetic Outcome in Managing Acute and Chronic Upper and Midface Deformities Using Computer Assisted Planning

Article 14, Volume 44, Issue 2, April 2020, Page 337-352  XML PDF (75.14 MB)
Document Type: Original Article
DOI: 10.21608/ejprs.2020.113497
View on SCiNiTO View on SCiNiTO
Authors
Mohamed A.A. Saleh* 1; Amr A. Ghanem2; Omar A. Hamad2; Assem M. Abdel Latif3
1The Department of Plastic, Reconstruction, Maxillofacial Surgeries & Burn Management, Faculty of Medicine, Ain Shams University, Cairo, Egypt
2The Department of Oral and Maxillofacial Surgery Department, Faculty of Dentistry , Ain Shams University, Cairo, Egypt
3The Department of Neurosurgery , Faculty of Medicine, Ain Shams University, Cairo, Egypt
Abstract
Surgical procedures in the facial region are associated by
a variety of difficulties. The anatomy of the maxillofacial
region, the complexity of the bony architecture as well as the
esthetic implications.
The three dimensional imaging and 3D printing, have
been applied for the restoration the complex anatomy of
craniofacial structures. In addition, mirror-imaging techniques
advocating 3D computed tomographic (CT) scanning and 3D
printing can maximize the surgical outcome on both the
functional and esthetic reconstruction levels. A synthetic
scaffold can be pre-molded to the individual prototype skull
model to resemble the anatomic contour before applying it to
cover the orbital defects.
Our aim is to show the importance and present our experience
with three-dimensional virtual planning in solving a
variety of acute and chronic clinical deformities within the
scope of trauma in the cranio maxillofacial region.
25 patients were retrospectively recruited. Mean age was
33.5 years (range 13-59), male: female ratio = 2.6:1 (18:7).
Eleven patients had acute injuries (44%) while the remaining
14 patients (56%) had chronic (malunited) fractures performed
in 2 different centers treating maxillofacial deformities operated
utilizing 3D planning protocols.
The advocation of the virtual planning techniques, three
dimension printing and printed custom implant enabled an
accurate reduction and fixation procedure of complex acute
and chronic complex upper and midface fracture, which is
reflected in very satisfactory aesthetic outcome.
Keywords
Three dimension virtual planning; Craniomaxillofacial deformities; Three dimension printing; Three dimension printed custom implant
Main Subjects
Aesthetics; Maxillofacial and cranio-maxillo-facial surgery; New technologies and products
References
1- Wang L.Y., Du H.M., Zhang G., Tang W., Liu L., Jing W.
and Long J.: The application of digital surgical diagnosis
and treatment technology:a promising strategy for surgical
reconstruction of craniomaxillofacial defect and deformity,
Med. Hypotheses, Vol. 77, pp. 1004-1005, 2011.
2- Drake V.E., Rizzi C.J., Greywoode J.D., Vakharia K.T.
and Vakharia K.T.: Midface Fracture Simulation and
Repair:A Computer-Based Algorithm. Craniomaxillofac
Trauma Reconstr., Vol. 12, pp. 14-19, 2019.
3- Day K.M., Gabrick K.S. and Sargent L.A.: Applications
of Computer Technology in Complex Craniofacial Reconstruction.
Plast. Reconstr. Surg. Glob Open, Vol. 6: p.
e1655, 2018.
4- Day K.M., Phillips P.M. and Sargent L.A.: Correction of
a Posttraumatic Orbital Deformity Using Three-
Dimensional Modeling,Virtual Surgical Planning with
Computer-Assisted Designand Three-Dimensional Printing
of Custom Implants, Craniomaxillofac. Trauma Reconstr.,
Vol. 11: pp. 78-82, 2018.
5- Volpe Y., Furferi R., Governi L., Uccheddu F., Carfagni
M., Mussa F., Scagnet M. and Genitori L.: Surgery of
complex craniofacial defects: A single-step AM-based
methodology. Comput Methods Programs Biomed., Vol.
165: pp. 225-233, 2018.
6- Park S.W., Choi J.W., Koh K.S. and Oh T.S.: Mirror-
Imaged Rapid Prototype Skull Model and Pre-Molded
Synthetic Scaffold to Achieve Optimal Orbital Cavity
Reconstruction. J. Oral Maxillofac. Surg., Vol. 73: pp.
1540-1553, 2015.
7- Bauermeister A.J., Zuriarrain A. and Newman M.I.: Threedimensional
printing in plastic and reconstructive surgery:
A systematic review. Ann. Plast. Surg., 2015.
8- Kamali P., Dean D., Skoracki R., et al.: The current role
of threedimensional printing in plastic surgery. Plast.
Reconstr. Surg., 137: 1045-1055, 2016.
9- Gerstle T.L., Ibrahim A.M., Kim P.S., et al.: A plastic
surgery application in evolution: Three-dimensional printing.
Plast. Reconstr. Surg., 133: 446-451, 2014.
10- Pfaff M.J. and Steinbacher D.M.: Plastic surgery applications
using Three-dimensional planning and computerassisted
design and manufacturing. Plast. Reconstr. Surg.,
137: 603e-616e, 2016.
11- Darwood A., Collier J., Joshi N., et al.: Re-thinking 3D
printing: A Novel approach to guide facial contouring. J.
Craniomaxillofac. Surg., 43: 1256-1260, 2105.
12- Farré-Guasch E., Wolff J., Helder M.N., et al.: Application
of additive manufacturing in oral and maxillofacial surgery.
J. Oral Maxillofac. Surg., 73: 2408-2418, 2015.
13- Fisher M., Medina M. 3rd, Bojovic B., et al.: Indications
for computer- aided design and manufacturing in congenital
craniofacial reconstruction. Craniomaxillofac. Trauma
Reconstr., 9: 235-241, 2016.
14 - Hyung W.Y., Nguyen A. and Yong K.K.: Facial contouring
surgery with custom silicone implants based on a 3D
prototype model and CT-scan: A preliminary study. Aesth.
Plast. Surg., 39: 418-424, 2105.
15- Joffe J., Harris M., Kahugu F., et al.: A prospective study
of computer-aided design and manufacture of titanium
plate for cranioplasty and its clinical outcome. Br. J.
Neurosurg., 13: 576-580, 1999.
16- Levine J.P., Patel A., Saadeh P.B., et al.: Computer-aided
design and manufacturing in craniomaxillofacial surgery:
the new state of the art. J. Craniofac. Surg., 23: 288-293,
2012.
17 - Müller A., Krishnan K.G., Uhl E., et al.: The application
of rapid prototyping techniques in cranial reconstruction
and preoperative planning in neurosurgery. J. Craniofac.
Surg., 14: 899-914, 2003.
18- Poukens J., Haex J. and Riediger D.: The use of rapid
prototyping in the preoperative planning of distraction
osteogenesis of the cranio-maxillofacial skeleton. Comput
Aided Surg., 8: 146-154, 2003.
19- Rustemeyer J., Melenberg A. and Sari-Rieger A.: Costs
incurred by applying computer-aided design/computeraided
manufacturing techniques for the reconstruction of
maxillofacial defects. J. Craniomaxillofac. Surg., 42:
2049-2055, 2014.
20- Rotaru H., Ba˘ciut¸ G., Stan H., et al.: Abstract: Reconstruction
of craniofacial bone defects with threedimensional
custommade implants. A five year experience.
Intl. J. Oral Maxillof. Surg., 38: 500, 2009.
21- Tang W., Guo L., Long J., et al.: Individual design and
rapid prototyping in reconstruction of orbital wall defects.
J. Oral Maxillofac. Surg., 68: 562-570, 2010.
22- Tepper O.M., Sorice S., Hershman G.N., et al.: Use of
virtual 3-dimensional surgery in post-traumatic craniomaxillofacial
reconstruction. J. Oral Maxillofac. Surg.,
69: 733-741, 2011.
23- Tsuji M., Noguchi N., Ihara K., et al.: Fabrication of a
maxillofacial prosthesis using a computer-aided design
and manufacturing system. J. Prosthodont., 13: 179-183,
2004.
24- Yan A. and Yaremchuk M.: Abstract P60: Facial skeletal
augmentation with custom implants using computerassisted
design (CAD) and computer-assisted manufacturing
(CAM) technology. Plast. Recon. Surg., 135: 1239,
2015.
25- Zopf D.A., Mitsak A.G., Flanagan C.L., et al.: Computer
aided-designed, 3-dimensionally printed porous tissue
bioscaffolds for craniofacial soft tissue reconstruction.
Otolaryngol. Head Neck Surg., 152: 57-62, 2015.
26- Bradley Strong, et al.: Bradley Strong E and Gary C.
Facial Plast. Surg. Clin. N. Am., 25: 547-562, 2017.
352 Vol. 44, No. 2 / Improving Aesthetic Outcome in Managing Facial Deformities
27- Gadkari N., Bawane S., Chopra R., Bhate K. and Kulkarni
D.: Comparative evaluation of 2-point vs 3-point fixation
in the treatment of zygomaticomaxillary complex fractures
- A systematic review. J. Craniomaxillofac. Surg., 47 (10):
1542-1550, 2019.
28- Parthasarathy J.: 3D modeling, custom implants and its
future perspectives in craniofacial surgery. Ann. Maxillofac.
Surg., 4: 9-18, 2014.
29- Ozbolat I.T. and Yu Y.: Bioprinting toward organ fabrication:
Challenges and future trends. IEEE Trans Biomed
Eng., 60: 691-699, 2013.
30- Tan K.H., Chua C.K., Leong K.F., et al.: Scaffold development
using selective laser sintering of polyetheretherketone-
hydroxyapatite biocomposite blends. Biomaterials,
24: 3115-3123, 2003.
31- Alonso-Rodriguez E., Cebrián J.L., Nieto M.J., et al.:
Polyetheretherketone custom-made implants for craniofacial
defects: Report of 14 cases and review of the
literature. J. Craniomaxillofac. Surg., 43: 1232-1238,
2015.
32- Guevara-Rojas G., Figl M., Schicho K., et al.: Patientspecific
polyetheretherketone facial implants in a computer-
aided planning workflow. J. Oral Maxillofac. Surg.,
72: 1801-1812, 2014.
33- Rammos C.K., Cayci C., Castro-Garcia J.A., et al.: Patientspecific
polyetheretherketone implants for repair of craniofacial
defects. J. Craniofac. Surg., 26: 631-633, 2015.
34- Gellrich N.C., Schramm A., Hammer B., et al.: Computerassisted
secondary reconstruction of unilateral posttraumatic
orbital deformity. Plast. Reconstr. Surg., Vol. 110:
pp. 1417-1429, 2002.
35- Rana M., Gellrich M.M. and Gellrich N.C.: Customised
reconstruction ofthe orbital wall and engineering of
selective laser melting (SLM) coreimplants., Br. J. Oral
Maxillofac. Surg., 53, Vol. 53: pp. 208-209, 2015.
36- Farber S.J., Nguyen D.C., Skolnick G.B., Woo A.S. and
Patel K.B.: Current Management of Zygomaticomaxillary
Complex Fractures: A Multidisciplinary Survey and Literature
Review. Craniomaxillofac. Trauma Reconstr., Vol.
9: pp. 313-322, 2016.
37- Xi Gong, Yang He, Jingang An, Yao Yang, Xiuling Huang,
Meng Liu,Yangyang Zhao and Yi Zhang: Application of
a Computer-Assisted Navigation System (CANS) in the
Delayed Treatment of Zygomatic Fractures: A Randomized
Controlled Trial. J. Oral Maxillofac. Surg., Vol. 75: pp.
1450-1463, 2017.
38- Ellis E. and KittidumkerngW.: Analysis of treatment for
isolated zygomaticomaxillary. J. Oral Maxillofac. Surg.,
Vol. 54: pp. 386-391, 1996.
39- Kozakiewicz M. and Szymor P.: Comparison of pre-bent
titanium mesh versus polyethylene implants in patient
specific orbital reconstructions. Head Face Med., Vol. 9:
p. 32, 2013.
40- Huempfner-Hierl H., Doerfler H.M., Kruber D., et al.:
Morphologic comparison of preformed orbital meshes.
J. Oral Maxillofac. Surg., Vol. 73: pp. 1119-1123, 2015.
41- Chi M.J., Ku M., Shin K.H., et al.: An analysis of 733
surgically treatedblowout fractures, Ophthalmologica,
167-175, Vol. 224, 2010.
42- Rana M., Essig H., Rüecker M., et al.: Development and
demonstration of anovel computer planning solution for
predefined correction of enophthalmos in anophthalmic
patients using prebended 3D titanium-meshes-atechnical
note. J. Oral Maxillofac. Surg., Vol. 70: pp. 631-638,
2012.
43- Zizelmann C., Gellrich N.C., Metzger M.C., et al.: Computer-
assisted recon-struction of orbital floor based on
cone beam tomography, Br. J. Oral Maxillofac. Surg.,
Vol. 45: pp. 79-80, 2007.
44- Rana M., Chui C.H., Wagner M., et al.: Increasing the
accuracy of orbitalreconstruction with selective lasermelted
patient-specific implantscombined with intraoperative
navigation. J. Oral Maxillofac. Surg., Vol. 73: pp.
1113-1118, 2015.
45- Ranaa M., Holtmann H., Rana M., Kanatas A.N., Singh,
Sproll C.K., Kübler N.R., Ipaktchi R., Hufendiek K. and
Gellrich N.-C.: Primary orbital reconstruction with selective
laser melted core patient-specific implants: Overview
of 100 patients., Br. J. Oral Maxillofac. Surg., 2019.
46- Gomes de Oliveira P., Perry da Câmara C. and Valejo
Coelho P.: Intra- and interreader variability of orbital
volume quantification using 3D computed tomography
for reconstructed orbital fractures. J. Craniomaxillofac.
Surg., Vol. 47: pp. 1060-1064, 2019

Statistics
Article View: 298
PDF Download: 741
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.