Saleh, M., Ghanem, A., Hamad, O., Abdel Latif, A. (2020). Improving Aesthetic Outcome in Managing Acute and Chronic Upper and Midface Deformities Using Computer Assisted Planning. The Egyptian Journal of Plastic and Reconstructive Surgery, 44(2), 337-352. doi: 10.21608/ejprs.2020.113497
Mohamed A.A. Saleh; Amr A. Ghanem; Omar A. Hamad; Assem M. Abdel Latif. "Improving Aesthetic Outcome in Managing Acute and Chronic Upper and Midface Deformities Using Computer Assisted Planning". The Egyptian Journal of Plastic and Reconstructive Surgery, 44, 2, 2020, 337-352. doi: 10.21608/ejprs.2020.113497
Saleh, M., Ghanem, A., Hamad, O., Abdel Latif, A. (2020). 'Improving Aesthetic Outcome in Managing Acute and Chronic Upper and Midface Deformities Using Computer Assisted Planning', The Egyptian Journal of Plastic and Reconstructive Surgery, 44(2), pp. 337-352. doi: 10.21608/ejprs.2020.113497
Saleh, M., Ghanem, A., Hamad, O., Abdel Latif, A. Improving Aesthetic Outcome in Managing Acute and Chronic Upper and Midface Deformities Using Computer Assisted Planning. The Egyptian Journal of Plastic and Reconstructive Surgery, 2020; 44(2): 337-352. doi: 10.21608/ejprs.2020.113497
Improving Aesthetic Outcome in Managing Acute and Chronic Upper and Midface Deformities Using Computer Assisted Planning
1The Department of Plastic, Reconstruction, Maxillofacial Surgeries & Burn Management, Faculty of Medicine, Ain Shams University, Cairo, Egypt
2The Department of Oral and Maxillofacial Surgery Department, Faculty of Dentistry , Ain Shams University, Cairo, Egypt
3The Department of Neurosurgery , Faculty of Medicine, Ain Shams University, Cairo, Egypt
Abstract
Surgical procedures in the facial region are associated by a variety of difficulties. The anatomy of the maxillofacial region, the complexity of the bony architecture as well as the esthetic implications. The three dimensional imaging and 3D printing, have been applied for the restoration the complex anatomy of craniofacial structures. In addition, mirror-imaging techniques advocating 3D computed tomographic (CT) scanning and 3D printing can maximize the surgical outcome on both the functional and esthetic reconstruction levels. A synthetic scaffold can be pre-molded to the individual prototype skull model to resemble the anatomic contour before applying it to cover the orbital defects. Our aim is to show the importance and present our experience with three-dimensional virtual planning in solving a variety of acute and chronic clinical deformities within the scope of trauma in the cranio maxillofacial region. 25 patients were retrospectively recruited. Mean age was 33.5 years (range 13-59), male: female ratio = 2.6:1 (18:7). Eleven patients had acute injuries (44%) while the remaining 14 patients (56%) had chronic (malunited) fractures performed in 2 different centers treating maxillofacial deformities operated utilizing 3D planning protocols. The advocation of the virtual planning techniques, three dimension printing and printed custom implant enabled an accurate reduction and fixation procedure of complex acute and chronic complex upper and midface fracture, which is reflected in very satisfactory aesthetic outcome.
1- Wang L.Y., Du H.M., Zhang G., Tang W., Liu L., Jing W. and Long J.: The application of digital surgical diagnosis and treatment technology:a promising strategy for surgical reconstruction of craniomaxillofacial defect and deformity, Med. Hypotheses, Vol. 77, pp. 1004-1005, 2011. 2- Drake V.E., Rizzi C.J., Greywoode J.D., Vakharia K.T. and Vakharia K.T.: Midface Fracture Simulation and Repair:A Computer-Based Algorithm. Craniomaxillofac Trauma Reconstr., Vol. 12, pp. 14-19, 2019. 3- Day K.M., Gabrick K.S. and Sargent L.A.: Applications of Computer Technology in Complex Craniofacial Reconstruction. Plast. Reconstr. Surg. Glob Open, Vol. 6: p. e1655, 2018. 4- Day K.M., Phillips P.M. and Sargent L.A.: Correction of a Posttraumatic Orbital Deformity Using Three- Dimensional Modeling,Virtual Surgical Planning with Computer-Assisted Designand Three-Dimensional Printing of Custom Implants, Craniomaxillofac. Trauma Reconstr., Vol. 11: pp. 78-82, 2018. 5- Volpe Y., Furferi R., Governi L., Uccheddu F., Carfagni M., Mussa F., Scagnet M. and Genitori L.: Surgery of complex craniofacial defects: A single-step AM-based methodology. Comput Methods Programs Biomed., Vol. 165: pp. 225-233, 2018. 6- Park S.W., Choi J.W., Koh K.S. and Oh T.S.: Mirror- Imaged Rapid Prototype Skull Model and Pre-Molded Synthetic Scaffold to Achieve Optimal Orbital Cavity Reconstruction. J. Oral Maxillofac. Surg., Vol. 73: pp. 1540-1553, 2015. 7- Bauermeister A.J., Zuriarrain A. and Newman M.I.: Threedimensional printing in plastic and reconstructive surgery: A systematic review. Ann. Plast. Surg., 2015. 8- Kamali P., Dean D., Skoracki R., et al.: The current role of threedimensional printing in plastic surgery. Plast. Reconstr. Surg., 137: 1045-1055, 2016. 9- Gerstle T.L., Ibrahim A.M., Kim P.S., et al.: A plastic surgery application in evolution: Three-dimensional printing. Plast. Reconstr. Surg., 133: 446-451, 2014. 10- Pfaff M.J. and Steinbacher D.M.: Plastic surgery applications using Three-dimensional planning and computerassisted design and manufacturing. Plast. Reconstr. Surg., 137: 603e-616e, 2016. 11- Darwood A., Collier J., Joshi N., et al.: Re-thinking 3D printing: A Novel approach to guide facial contouring. J. Craniomaxillofac. Surg., 43: 1256-1260, 2105. 12- Farré-Guasch E., Wolff J., Helder M.N., et al.: Application of additive manufacturing in oral and maxillofacial surgery. J. Oral Maxillofac. Surg., 73: 2408-2418, 2015. 13- Fisher M., Medina M. 3rd, Bojovic B., et al.: Indications for computer- aided design and manufacturing in congenital craniofacial reconstruction. Craniomaxillofac. Trauma Reconstr., 9: 235-241, 2016. 14 - Hyung W.Y., Nguyen A. and Yong K.K.: Facial contouring surgery with custom silicone implants based on a 3D prototype model and CT-scan: A preliminary study. Aesth. Plast. Surg., 39: 418-424, 2105. 15- Joffe J., Harris M., Kahugu F., et al.: A prospective study of computer-aided design and manufacture of titanium plate for cranioplasty and its clinical outcome. Br. J. Neurosurg., 13: 576-580, 1999. 16- Levine J.P., Patel A., Saadeh P.B., et al.: Computer-aided design and manufacturing in craniomaxillofacial surgery: the new state of the art. J. Craniofac. Surg., 23: 288-293, 2012. 17 - Müller A., Krishnan K.G., Uhl E., et al.: The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J. Craniofac. Surg., 14: 899-914, 2003. 18- Poukens J., Haex J. and Riediger D.: The use of rapid prototyping in the preoperative planning of distraction osteogenesis of the cranio-maxillofacial skeleton. Comput Aided Surg., 8: 146-154, 2003. 19- Rustemeyer J., Melenberg A. and Sari-Rieger A.: Costs incurred by applying computer-aided design/computeraided manufacturing techniques for the reconstruction of maxillofacial defects. J. Craniomaxillofac. Surg., 42: 2049-2055, 2014. 20- Rotaru H., Ba˘ciut¸ G., Stan H., et al.: Abstract: Reconstruction of craniofacial bone defects with threedimensional custommade implants. A five year experience. Intl. J. Oral Maxillof. Surg., 38: 500, 2009. 21- Tang W., Guo L., Long J., et al.: Individual design and rapid prototyping in reconstruction of orbital wall defects. J. Oral Maxillofac. Surg., 68: 562-570, 2010. 22- Tepper O.M., Sorice S., Hershman G.N., et al.: Use of virtual 3-dimensional surgery in post-traumatic craniomaxillofacial reconstruction. J. Oral Maxillofac. Surg., 69: 733-741, 2011. 23- Tsuji M., Noguchi N., Ihara K., et al.: Fabrication of a maxillofacial prosthesis using a computer-aided design and manufacturing system. J. Prosthodont., 13: 179-183, 2004. 24- Yan A. and Yaremchuk M.: Abstract P60: Facial skeletal augmentation with custom implants using computerassisted design (CAD) and computer-assisted manufacturing (CAM) technology. Plast. Recon. Surg., 135: 1239, 2015. 25- Zopf D.A., Mitsak A.G., Flanagan C.L., et al.: Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Otolaryngol. Head Neck Surg., 152: 57-62, 2015. 26- Bradley Strong, et al.: Bradley Strong E and Gary C. Facial Plast. Surg. Clin. N. Am., 25: 547-562, 2017. 352 Vol. 44, No. 2 / Improving Aesthetic Outcome in Managing Facial Deformities 27- Gadkari N., Bawane S., Chopra R., Bhate K. and Kulkarni D.: Comparative evaluation of 2-point vs 3-point fixation in the treatment of zygomaticomaxillary complex fractures - A systematic review. J. Craniomaxillofac. Surg., 47 (10): 1542-1550, 2019. 28- Parthasarathy J.: 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann. Maxillofac. Surg., 4: 9-18, 2014. 29- Ozbolat I.T. and Yu Y.: Bioprinting toward organ fabrication: Challenges and future trends. IEEE Trans Biomed Eng., 60: 691-699, 2013. 30- Tan K.H., Chua C.K., Leong K.F., et al.: Scaffold development using selective laser sintering of polyetheretherketone- hydroxyapatite biocomposite blends. Biomaterials, 24: 3115-3123, 2003. 31- Alonso-Rodriguez E., Cebrián J.L., Nieto M.J., et al.: Polyetheretherketone custom-made implants for craniofacial defects: Report of 14 cases and review of the literature. J. Craniomaxillofac. Surg., 43: 1232-1238, 2015. 32- Guevara-Rojas G., Figl M., Schicho K., et al.: Patientspecific polyetheretherketone facial implants in a computer- aided planning workflow. J. Oral Maxillofac. Surg., 72: 1801-1812, 2014. 33- Rammos C.K., Cayci C., Castro-Garcia J.A., et al.: Patientspecific polyetheretherketone implants for repair of craniofacial defects. J. Craniofac. Surg., 26: 631-633, 2015. 34- Gellrich N.C., Schramm A., Hammer B., et al.: Computerassisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast. Reconstr. Surg., Vol. 110: pp. 1417-1429, 2002. 35- Rana M., Gellrich M.M. and Gellrich N.C.: Customised reconstruction ofthe orbital wall and engineering of selective laser melting (SLM) coreimplants., Br. J. Oral Maxillofac. Surg., 53, Vol. 53: pp. 208-209, 2015. 36- Farber S.J., Nguyen D.C., Skolnick G.B., Woo A.S. and Patel K.B.: Current Management of Zygomaticomaxillary Complex Fractures: A Multidisciplinary Survey and Literature Review. Craniomaxillofac. Trauma Reconstr., Vol. 9: pp. 313-322, 2016. 37- Xi Gong, Yang He, Jingang An, Yao Yang, Xiuling Huang, Meng Liu,Yangyang Zhao and Yi Zhang: Application of a Computer-Assisted Navigation System (CANS) in the Delayed Treatment of Zygomatic Fractures: A Randomized Controlled Trial. J. Oral Maxillofac. Surg., Vol. 75: pp. 1450-1463, 2017. 38- Ellis E. and KittidumkerngW.: Analysis of treatment for isolated zygomaticomaxillary. J. Oral Maxillofac. Surg., Vol. 54: pp. 386-391, 1996. 39- Kozakiewicz M. and Szymor P.: Comparison of pre-bent titanium mesh versus polyethylene implants in patient specific orbital reconstructions. Head Face Med., Vol. 9: p. 32, 2013. 40- Huempfner-Hierl H., Doerfler H.M., Kruber D., et al.: Morphologic comparison of preformed orbital meshes. J. Oral Maxillofac. Surg., Vol. 73: pp. 1119-1123, 2015. 41- Chi M.J., Ku M., Shin K.H., et al.: An analysis of 733 surgically treatedblowout fractures, Ophthalmologica, 167-175, Vol. 224, 2010. 42- Rana M., Essig H., Rüecker M., et al.: Development and demonstration of anovel computer planning solution for predefined correction of enophthalmos in anophthalmic patients using prebended 3D titanium-meshes-atechnical note. J. Oral Maxillofac. Surg., Vol. 70: pp. 631-638, 2012. 43- Zizelmann C., Gellrich N.C., Metzger M.C., et al.: Computer- assisted recon-struction of orbital floor based on cone beam tomography, Br. J. Oral Maxillofac. Surg., Vol. 45: pp. 79-80, 2007. 44- Rana M., Chui C.H., Wagner M., et al.: Increasing the accuracy of orbitalreconstruction with selective lasermelted patient-specific implantscombined with intraoperative navigation. J. Oral Maxillofac. Surg., Vol. 73: pp. 1113-1118, 2015. 45- Ranaa M., Holtmann H., Rana M., Kanatas A.N., Singh, Sproll C.K., Kübler N.R., Ipaktchi R., Hufendiek K. and Gellrich N.-C.: Primary orbital reconstruction with selective laser melted core patient-specific implants: Overview of 100 patients., Br. J. Oral Maxillofac. Surg., 2019. 46- Gomes de Oliveira P., Perry da Câmara C. and Valejo Coelho P.: Intra- and interreader variability of orbital volume quantification using 3D computed tomography for reconstructed orbital fractures. J. Craniomaxillofac. Surg., Vol. 47: pp. 1060-1064, 2019